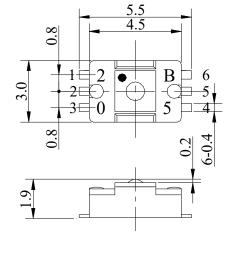
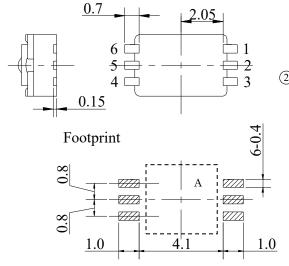


Model No. HFD-500S

長年培ったMEMS技術をコアテクノロジーとし、従来の方式ではなし得なかった1N以下の微小荷重を高精度で検出することが可能です。


■特長

- ·小型·低背 外形寸法 5.5×3.0×1.9mm
- ・微小荷重を高感度、高精度で検出可能
- ·高耐久性, 寿命 100 万回以上


■外形寸法

Model No. HFD-500S

Unit: mm 一般公差: ±0.1

① Vcc ② +OUTPUT ③ GND ④ GND ⑤ -OUTPUT ⑥ Vcc

内部回路

Terminal

■仕様

1.絶対最大定格

項目	定格			単位	備考
	Min.	Тур.	Max.	中 位	1佣行
駆動電圧	-	ı	5.5	Vdc	
保存温度範囲	-40	-	85	$^{\circ}\!\mathbb{C}$	
使用温度範囲	-20	-	60	$^{\circ}\!\mathbb{C}$	
破壊荷重	70	-	_	N	衝撃含む
寿命	1000k	ı	ı	Cycles	5~10N 60Hz(正弦波)
リフロー温度	_	-	250	$^{\circ}\!\mathbb{C}$	230℃以上で 60 秒以下
			10	sec	Max 2 🗖

2.定格(Ta=25°C、5.5V 未満で使用可能 ※1)

項目	定格			単位	備考
	Min.	Тур.	Max.	年 世	IIII 75
測定荷重範囲	0	ı	10	N	
ブリッジ抵抗	18	25	32	kΩ	
オフセット電圧	-3.6	1	3.6	mV/V	ON 時の出力電圧※1, 2
感度	ı	4.7	ı	mV/V/N	
直線性	-3	ı	3	%FS	FS=フルスケールスパン
オフセット温度特性	- 5		5	%FS	+25°Cからの⊿
感度温度特性	-0.1	_	0	%FS/N/°C	at -20 ~ +60°C

- ※1 センサ出力(OUTPUT Voltage)は駆動電圧に対してレシオメトリックとなります。
- *2 OUTPUT Voltage = (+OUTPUT Voltage) (OUTPUT Voltage)
- ※3 医療用・車載用は別途ご相談ください。