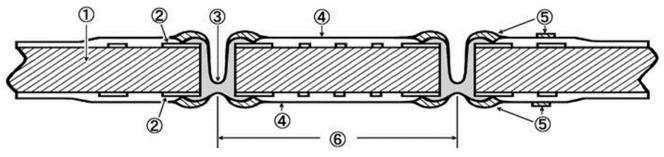
仕様書

1.5mmピッチ両面銅箔ペーストスルーホール基板

北陸電気工業株式会社 コンポーネント事業本部 PRC工場

適用範囲


1.5mmピッチ両面銅箔銅ペーストスルーホール基板

に適用し下記に記載の文章よりなります。

記

- [1] 構造
- [2] 製品規格
- [3] 設計基準および検査基準
- [4] 製造場所
- [5] 梱包
- [6] ロット表示
- [7] 保証期間
- [8] 環境対応
- [9] 取り扱い上の注意事項
- [10] その他
- [11] お断り

[1]構造

No.	名 称	膜厚(規格値)	No.	名 称	膜厚(規格値)
1	基 板	1.0mm~1.6mm	3	へ°ーストスルーホール(銀or銅)	a:Max. 40μ m
2	銅箔	35 μ m (+10,-5 μ m)			b:Max.100 μ m
4	ソルタ゛ーレシ゛スト	15 μ m (+10,-5 μ m)			
5	目玉レジスト及び表示	10 μ m (+10,-5 μ m)			スルーホール穴:
6	へ゜ーストスルーホールヒ゜ッチ	1.5㎜以上			NCドリル穴

※使用基材 FR-1, CEM-3, FR-4
※③のペーストスルーホールの高さは表裏で異なります。表面実装される部品の腹面高さに合わせて③
a,b面を指定してください。(一例:リフロー/フロー基板であればリフロー面をスルーホール高さの低いa面と することを推奨します)

[2]製品規格

1. 使用温度範囲 -40°C ~ +100°C とする。

2. 電気的特性

No	項目	試 験 方 法	規格
1	定格電流	ペーストスルーホール (スルーホール2穴以上は並列接続の場合とする。	Max 300mA/1穴 Max 500mA/2穴 Max 700mA/3穴 Max 900mA/4穴 Max1100mA/5穴
2	ラッシュ電流	ペーストスルーホール On Time 200ms以下 Duty 20%以下 回数10万回 (スルーホール2穴以上は並列接続の場合とする。	Max1.00A/1穴 Max1.65A/2穴 Max2.30A/3穴 Max2.95A/4穴 Max3.60A/5穴
3	抵抗値	ペーストスルーホール	100mΩ以下/1穴
4	絶縁抵抗値	常温常湿中でDC100V,1分間印加	10 ⁸ Ω 以上
5	耐電圧	常温常湿中で 1分間印加	100V以上
6	最高使用電圧	へ°-ストスルーホールと異電位間の電位差	銅:DC100V 銀:DC50V

3. 環境特性

No	項目	試 験 方 法	規 格
1	高温放置	温度100℃±2℃の恒温槽中に1000h±24h放置する。その後常温常湿中に1時間放置後の抵抗値。	Max200mΩ/1穴
2	耐湿放置	温度60℃±2℃、湿度90%RH~95%RHの恒温恒湿槽中に1000h±24h放置する。その後常温常湿中に24時間放置後の抵抗値。	Max200mΩ/1穴
3	冷熱サイクル	-40℃±5℃(30分)⇔100℃±5℃(30分)を1サイクルとして、100サイクル繰り返す。その後常温常湿中に1時間放置後の抵抗値。	Max200mΩ/1穴
4	オイルディップ	1.260℃±5℃シリコンオイル10秒 2.移動 10秒 3.20℃±5℃ シリコンオイル10秒 4.移動 10秒 1~4を1サイクルとして100サイクル繰り返した 後、常温常湿中に1時間放置後の抵抗値。	Max200mΩ/1穴
5	Р. С. Т.	温度121℃、蒸気圧2気圧中に8時間放置し、その後常温常湿中に24時間放置後の抵抗値。	Max200m $\Omega/1$ 穴
6	はんだ耐熱	プリント基板のはんだ面側を260℃±5℃の溶融 半田槽に5秒間浸した後、30分間室温に放置す る。これを2サイクル繰り返した後、常温常湿中に1 時間放置後の抵抗値。	Max200m $\Omega/1$ 穴
7	リフロー はんだ耐熱	[℃] 300 200 160 100 室温 (リフロー面銅箔上に熱電対を耐熱テープで固定して測定) 上記の温度プロファイルでリフローはんだを行った後、30分間常温常湿中に放置する。これを2サイクル繰り返した後、常温常湿中に1時間放置後の抵抗値。	Max200mΩ/1穴
8	リフローはんだ +フローはんだ	前記項目7の試験後、連続して同じく前記項目6 の条件にて各1サイクルの試験を行ない、その後 常温常湿中に1時間放置後の抵抗値。	Max200mΩ/1穴

4. 寿命特性

No	項目	試 験 方 法	規格
1	負荷寿命	温度70℃±2℃の恒温槽中で定格電流 300mA(1.5h ON,0.5h OFF)を1000h±24h印加する。その後常温常湿中に1時間放置後の抵抗値。	Max200mΩ/1穴
2	耐湿負荷寿命	温度40℃±2℃、湿度90%RH~95%RHの恒温恒湿槽中で定格電流300mA(1.5h ON,0.5h OFF)を1000h±24h印加する。その後常温常湿中に24時間放置後の抵抗値。	Max200mΩ/1穴
3	マイグレーション (銀ペースト)	温度40℃±2℃、湿度90%RH~95%RHの恒温恒湿槽中で銀ペーストスルーホール間に50Vの直流電圧を1000h±24h印加する。その後常温常湿中に24時間放置後の抵抗値。	Max200mΩ/1穴 絶縁抵抗値10 ⁷ Ω以上 (測定電圧DC50V)
	マイグレーション (銅ペースト)	温度60℃±2℃、湿度90%RH~95%RHの恒温恒湿槽中で銅ペーストスルーホール間に100Vの直流電圧を1000h±24h印加する。その後常温常湿中に24時間放置後の抵抗値。	Max200mΩ/1穴 絶縁抵抗値10 ⁷ Ω以上 (測定電圧DC100V)

5. 機械的特性

No	項目	試 験 方 法	規格
1	曲げ試験	100 mm 3mm 3mm 3mm 3mm 3mm 3mm 3mm 3mm 3m	Max200mΩ/1穴 スルーホール部のクラック 及び剥がれが無い事
2	耐衝撃性	コンクリート床上に、高さ1mより水平に落下させる。これを3回行なった時の抵抗値及び外観。	Max200mΩ/1穴 スルーホール部のクラック 及び剥がれが無い事
3	引き剥がし強度	セロテープ(日東製No29,24mm巾)を試験部分に 長さ50mm以上指圧により気泡が残らない様に圧 着し10秒後できるだけ素早く基板に対し直角方向 にセロテープを引き剥がす。	スルーホール、レジスト、 標示の剥がれが無い事

6. 耐薬品性

No	項目	試 験 方 法	規 格
1	超音波洗浄	基板を下記溶剤で5分±1分間超音波洗浄後取り出し、常温常湿中に1時間放置後の抵抗値及び外観。 洗浄液 アセトン,メタノール	Max200m Ω/1穴 スルーホール部の変色、 クラック及び剥がれが無 い事

7. 基板耐熱性

No	項目	試 験 方 法	規格
1	リフローはんだ	添付文書による。 「北陸電気工業㈱ 推奨 鉛フリー半田対応リフロー温度プロファイル」	基板の膨れ、銅箔の 剥がれが無い事

[3] 設計基準 及び 検査基準(アートワーク及び穴位置はCADデータとする。)

1. ペーストスルーホール

1. 4 V. VIVVIV. W.	10				
項目	図	記号	名称	設計基準	検査基準
1. ペーストスルーホール 銅箔ラント˙	W1→	1-W1	スルーホールピッチ間隔	1.5mm以上	
銅箔ランド間隔 配置制限		1-W2	スルーホール銅箔ラント゛	1.2 <i>ϕ</i>	
				(同一基板内のスルーホール径は統一	ーする。)
		1-W3	スルーホールス・レ		0.2mm以上
	₩4	1-W4	スルーホール〜 スルーホール間隔		0.2㎜以上
	- w5	1-W5	スルーホールセンター配置	0.5mm以上 スルーホールを3穴以上直列に配置する場合には、スルーホールのセンターを0.5mm以上ずらし、千鳥配列とする。 但し、スルーホールビッチについては1項に従う。	
2. ペーストスルーホール レジスト径	<u>₩2</u>	2-W1	レジオ径	1.5 <i>ϕ</i>	
オーバーコート径		2-W2	目玉レジスト径 (オーハ・ーコート径)	1.8φ	
3. ペーストスルーホール	·//////\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ピンホール		
のピンホール、	ピンホール		カケ		スルーホールランドの1/4以下
カケ	ת לית				
4. ペーストスルーホール の露出			露出	穴内壁部(点線) 基板スルーホール部断面図	オーバーコートのずれ・かすれ・未 塗布によるペーストのまま出は無き 事。 但しこれは表面的なもので あり、 穴内壁部のペースト露出 は除く
5. ペーストスルーホール 銅箔ラント゛	<u>‡</u> ₩4 <u>‡</u> ₩1	6-W1	銅箔ランド〜 銅箔	0.3mm以上	0.2mm以上
~隣接銅箔間隔		6-W2	銅箔ラント`〜 チップ゚ラント`	0.5㎜以上	0.2mm以上
	W3 W2	6-W3	銅箔ランド〜 部品挿入ランド	0.5㎜以上	0.2mm以上
	都品ランド // チップランド // //	6-W4	スルーホール~ 銅箔		0.2mm以上
6. ペーストスルーホール 銅箔ラント゛	Vħyト ミンン目 W1 W2 W4 W4 W4	7-W1	銅箔ランド〜端面	1.2mm以上	1.0㎜以上
~基板ミシン目 ~Vカット	W6 W4 W4 W4 W4 W6 W6 W6	7-W2	銅箔ランドセンター 〜端面	1.8mm以上	
~基板端面		7-W3	銅箔ランド ~ミシン目	1.2mm以上	1.0㎜以上
		7-W4	銅箔ランドセンター ~ミシン目	1.8mm以上	
		7-W5	銅箔ランド ~Vカット	1.0mm以上	0.7㎜以上
		7-W6	銅箔ラント・センター ~Vカット	1.6mm以上	

2. 導体

2. 導体					
項目	図	記号	名称	設計基準	検査基準
1. 銅導体巾及び 銅導体間隔	77777777777777777777777777777777777777	1-W1	最小銅導体幅	0.2mm以上	0.13mm以上
	₩3 <u>↓</u> ₩4	1-W2	最小銅導体間隔	0.2mm以上	0.13mm以上
	W4 	1-W4 1-L1	銅導体欠損 i)W3≧5.0mm		W4≦W3/5(MAX4mm)
	W7		ii)5.0mm>W3≧0.5mm		L1≦5.0mm W4≦W3/3, L1≦W3
	12 L2 L2 → W7 W6		iii)0.5mm>W3≧0.2mm		(W3-W4)≥0.15mm
			iv)W3≦0.2mm		L1≦W3 (W3-W4)≧0.13mm L1≦W3
		1-W7 1-L2	残銅及突起長さ i)W6≧1.0mm		W7≦W5/5, L2≦1.0mm
			ii)W6<1.0mm		$W7 \le 50 \mu \text{ m}, L2 \le W6$
			欠損数	100mmX100mmの面積に対して2個迄とする。	
2. 銅箔ランド欠損	W7 W2→ ←W4 W5→ → → → → → → → → → → → → → → → → → →	2-W1 2-W2	欠損長さ		W1≦W8/3 W2≦W8/3
	W6→ W3 D W1	2-W3 2-W4	銅箔ランド、残り巾		W3≦W8/3
		2-W5 2-W6	i)1.78mmピッチ		W4≧0.1mm W5+W6≧0.1mm
	 ₩8	2-W7			W7≥0.1mm
			ii)1.78mmピッチ以外		W4≧0.2mm
					$W5+W6 \ge 0.2mm$ $W7 \ge 0.2mm$
3. 銅箔ランド突起	W1 ↑ ////>→1 I+1//	3-W1	突起長さ		$W1 \le 0.5 mm$ $W1 \le (W4/4)$
	W4 1 1				(W3-W1)≥0.2mm
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3-W2	突起巾		W2≦(W4/2)
				突起の個数は各面で5ヶ所以内とする。 1ランド内に1個までとする。	
4. 銅導体		4-W1	銅導体~部品穴		
~穴間隔	W1 <u>↑</u> ↑D1 銅箔		異電位	(D1/2)+0.5mm以上	(D1/2)+0.3mm以上
	¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬		同電位	(D1/2)+0.5㎜以上	(D1/2)+0.2mm以上
	基材			部品穴にVホールをご指定の時には別途打合せが必要で	
5. 銅導体	(断面図) 銅箔			す。	
	Vカット ミシン目 →W3 →W1 →W2	5-W1	導体~Vカット	1.0㎜以上	0.7㎜以上
~基板ジン目		5-W2	導体~ミシン目	1.0㎜以上	
~Vカット ~基板端面	_{W4}	5-W4	ハ°ターン幅 5-W3≦0.3mm	1.0㎜以上	0.8㎜以上
			5-W3>0.3mm	0.2㎜以上	0.15㎜以上
				下記の条件についても満足させることとする。	0.4 101.1
			5-W3 ≤ 0.5mm 5-W3>0.5mm	0.5mm以上 0.2mm以上	0.4mm以上 0.15mm以上
6. 外観		① ②	パターン形成についてん 導体の剥がれがない。	-	
		3	導体に断線がないこと	- -0	
		4) 5)	異電位導体間にショー 導体上に0.5mm以上の	トがないこと。 D盛り上がりがないこと。	
		⑥ ⑦		着は、導体の欠損扱いとする。 は、導体の欠損扱いとする。	
		U	[117区、こ~か ル、凹み(よ、守㎡V/八1月IXV こりる。	

3. ソルダーレジスト及びシルク

項目	図	記号	名称	設計基準		検査基準
1. チップ・ラント・部 ソルタ・ーレシ、スト	// 7/1/////////////////////////////////	1-W1	チップラント 異電位銅箔	0.3㎜以上	:	
及びシルク		1-W2	チップラント゛ ~ソルタ゛ーレシ゛スト	0.1㎜以上	:	チップランドへのレシブスト被りは無きこと
	WI WA WZ			0.1mm>W2>0 可能な限りチップラント・とソルタ 拡大して下さ	ーレジストの間隔を	
	W6 W3 W5	1-W3		0.8㎜以上	=	
		1-W4	スルーホールラント゛ ~チップ゜ラント゛	0.5㎜以上	:	
		1-W5	チップラント ~シルク	0.3㎜以上	:	チップランドへのシルク被りは無き こと
		1-W6	シルク巾	0.2㎜以上	-	0.1mm以上
				(判読、識	別できればカスレー部	可とする)
2. はんだ付け	W1→ W2	2-W1	銅箔ランド〜銅導体	0.3㎜以上	-	
銅箔ランド 最小残り巾		2-W2	銅箔ラント゛ ~ソルタ・ーレシ、スト	0.1㎜以上	•	
		2-W3	銅箔ランド 最小残り巾	1.78mmピッチ 1.78mmピッチリ		W1≥0.1mm W1≥0.2mm
					(レジストズレ、ニジミ含む)	
3. 導体露出			はんだ面は不可。	ッジの可能性なきパターンは可。		
					ソルダーレジスト 導体	チップパット
				47), 7)))42) 		
			(良)	(不良)	(良)	(不良)
4. ソルタ・ーレシ、スト		1	ソルダーレジスト形成は、	 印刷法による。		
外観、その他		2	緑色で均一に印刷され			
		3	実用上問題となるピンン	ホール、カスレ、剥がれ、傷、汚れ、異	物付着があってはなら	ない。
		4	アルコール等で拭いても	· · · · · · · · · · · · · · · · · · ·		
		5	セロテープ。によるピールテン			
		6		上問題となるシワ、フクレ等による剥か	ぶれがないこと。	
5. シルク		1	指定された色で均一に		n - 1 1	
外観、その他		2		ぶれについては判読可能であれば	エ 可とする。	
		3	アルコール等で拭いても			
		4	セロテープ。によるピールテン	47 ご羽かれけよいこと。		

4. 基板及び基板加工

4. 基板及び基板加工	•				
項目	図	記号	名称	設計基準	検査基準
1. 外周のワレ、カケ (クラック含む)	W2 W2	1-W1	ワレ、カケ長さ		5.0㎜以下
	W4 W3 W1	1-W2	ワレ、カケ奥行 (角穴(丸穴、スリット等 を含む)の近傍)		1.0mm以下 0.5×W3以下
	→ W2	1-W3	基板端面 ~丸穴、角穴	1.6㎜以上	
	W2 < → _₩	1-W4	ワレ、カケ奥行 (銅導体の近傍)		0.5mm以上
	t ★ W5 (基板断面)	1-W5	ワレ、カケ深さ		0.25×t以下
2. ペーストスルーホール 近傍の部品穴	₩1→ 部品穴	2-W1	スルーホール銅箔ラント・エッチ・ ~穴センター		
	************************************		パンチング 又は、ドリル穴加工	1.2+(0.5×W2)mm以上	穴加工方法については図面
	(断面図)		ドリル穴加工	1.2+(0.5×W2)mm未満	指示に基づき弊社にて選定

4. 基板及び基板加工(続き)

項目	図	記号	名称	設計基準	検査基準
3. Vカット	図面指示位置 W1 [±]	3-W1	Vカット溝深さ t=1.0mm t=1.2mm t=1.6mm	0.2mm 0.25mm 0.35mm	$\begin{array}{c} 0.2 \text{mm} \pm 0.1 \text{mm} \\ 0.25 \text{mm} \pm 0.1 \text{mm} \\ 0.35 \text{mm} \pm 0.1 \text{mm} \end{array}$
	W13	3-W2	Vカット残り厚み t=1.0mm t=1.2mm t=1.6mm	0.6mm 0.7mm 0.9mm	$0.6 \mathrm{mm} \pm 0.1 \mathrm{mm}$ $0.7 \mathrm{mm} \pm 0.1 \mathrm{mm}$ $0.9 \mathrm{mm} \pm 0.1 \mathrm{mm}$
		3-W3	表裏位置ズレ		0.1㎜以内
		3-W4	加工位置ズレ		± 0.3 mm
4. Vカット位置	基板端面 ▼ W1 Vカット	4-W1	基板端面 ~Vカット	5.0㎜以上	
		4-W2	ジャンピングVカット用 長穴	15.0㎜以上	
	ジャンピング W2 Vカット 自動挿入 禁止位置 上基準穴	4-W3	基準穴 ~Vカット		
	W3		禁止位置	自動挿入基準穴上になきこと	
5. Vカット形状	Vカットチェック用バターン Vカット誘い溝 45° 100 100 100 100 100 100 100 100 100 10	5-W1	Vカット誘い溝寸法	1.0㎜以上	
	45° Vhyh誘い溝 W1→ K-W1				
6. 部品穴加工方法	→ W2 ← _{部品穴}	6-W1 6-W2 6-W3	部品穴ピッチ 及び穴径 パンチング 又は	W2≧0.3mm W3≧ φ 0.5	
	\rightarrow W1 \leftarrow W3 \leftarrow	0-W3	トリル穴加工	$ \begin{split} &W1>2.0mm\\ &W2 \geqq 1.4mm\\ &W3 \leqq \phi~0.85 \end{split} $	穴加工方法については図面
			ドリル穴加工	W1≦2.0mm W2<1.4mm W3< φ 0.85	指示に基づき弊社にて選定
7. 反り、ネジレ	h v	7-h	反り・ねじれ		1.6mm以下(板厚1.6mm)
8. その他		① ②		」 (チッピング)があってはならない。 、実用上有害とみなされる変色、色ムラ、傷、フクレ、汚れ	がないこと。

5. 寸法

項目	図	記号	公差					
1. 外形	外形寸法		図面指定寸法による					
	外形寸法公差		寸法 L L ≦ 100	公差 ±0.1	単位(mm)			
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	±0.15 ±0.2				
			Lが200mmを超える場合については、50mmについては0.05mmを加えることとする。 特に指定がある場合には別途協議する。					
2. 丸穴	穴径		図面指定寸法による					
	穴径公差		指定穴径	公差	単位(mm)			
			φ 2.0未満	± 0.1				
			φ2.0以上	±0.15				
			特に指定がある場合には別途協					
	穴位置		図面指定寸法による					
	穴位置公差		穴間寸法	公差	単位(mm)			
			300㎜未満	±0.15				
			300㎜以上	±0.25				
			又、穴の中心と基準になるフィルムのランドの中心とのズレは±0.15㎜とする。 特に指定がある場合には別途協議する。					

5. 寸法(続き)

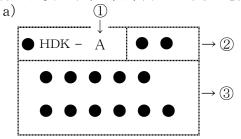
5. 寸法(続き) 項目	図	記号	公差				
3. 異型穴	穴寸法公差		±0.1mmとする。特に指定がある場合には別途協議する。				
	穴位置		図面指定寸法				
	穴位置公差			穴間寸法	公差	単位(mm)	
				300㎜未満	±0.15		
				300mm以上	±0.25		
			又、穴の 特に指	<u>±</u> 0.15mmとする。			
4. 銅箔パターン	銅箔間寸法公差			寸法 L	公差	単位(mm)	
				L ≦ 100	±0.08		
			10	00 ⟨ L ≦ 200	±0.13		
			20	00 ⟨ L ≦ 330	±0.18		
5. 基材板厚 基材板厚公差				1.6mm ±0.19mm			
			1.0mm ±0.18mm				
6. 印刷ズン	銅箔パターンスレ		基準穴に対し	て ±	± 0.15 mm		
	レシ、ストス・レ		銅箔パターンに	対して ±	± 0.15 mm		
	タ゛ブ゛ルマスクス゛レ		銅箔パターンに	対して ±	±0.15 mm		
	シルクズレ		基準穴に対して		=0.2mm		

6. 社内管理用パターン

項目	図	記号	名称	設計基準	検査基準
1. プレスカー・介	W4 W1 W2 プレスがイド穴 基 板	1-W1	が小穴径	2.5 φ	- 基板の右上及び左下で、捨て 基板かそれがない場合には基 - 板内に設置する
		1-W2	銅箔リング径 (銅箔リング内径)	2.8 ¢ (2.4 ¢)	
		1-W3	レジスト径	3.3ϕ	
		1-W4	端面からの距離	7.5mm以上	
		1-W5	銅箔ラント ・チップラント 禁止帯	9.0 φ	配線用パターンは可
	基板 はんだ面 W5 T				
2. 測定が介で	W3.	2-W1	が仆で径	2.5 φ	
	W2	2-W2	レジスト径	2.8 φ	■基板の左上及び右下で、捨て 基板かそれがない場合には基 板内に設置する
	W3 W1 測定が 1 / 穴 W4 基板はんだ面 の W4	2-W3	端面からの距離	7.5㎜以上	IN NEWE) O
		2-W4	銅箔ラント゛ ・チップ。ラント゛禁止帯	9.0 φ	配線用パターンは可

6. 社内管理用パターン(続き)

6. 社内管理用パターン		÷1 🛭	57 Ab-	=n.⇒l +r we	₩ ₩
項目	図	記号	名称 	設計基準	検査基準
3. パンチ確認用穴		3-W1	確認用穴径	1.0 φ	
		3-W2	銅箔径	1.6ϕ	基板の四隅4ヶ所設置する
		3-W3	レジスト径	2.0 φ	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
4. スルーホールチェック用 パターン	は ん だ 面 側	4-W1	スルーホールヒ [°] ッチ	2.5mm	
			4-W2	ラント・スルーホール間	2.2mm
		4-W3	接続パターン幅	1.0mm	
		4-W4	ラント・径	2.0 φ	
		4-W5	レジスト径	2.4ϕ	
		4-W6	接続パ゚ターン幅	1.0mm	
		4-W7	標示シルク、オーバーコー ト幅	1.1㎜(銅箔ランドの半分を覆う)	
		4-W8	標示シルク、オーバーコー ト長さ	2.2mm	
	シルク		チェック用スルーホールの仕	・ 様はその基板に使用しているスルーホール仕様に準じる。	
5. Vカットチェック用 パターン	Vhyl7√2 W3 W2 W1 W4 W4 W4 W4 W4 W4 W4 W4 W4	5-W1	ラント・径	1.5ϕ	-Vカット1本に1ヶ所作成。
) 5-W2	レジスト径	1.9 φ	
		5-W3	パターン幅	0.3mm	
		5-W4	ラント・〜Vカット間隔	0.3mm	
6. パターン太り細り 確認用パターン		6-W1	パターンサイス゛	5.0 φ	
	*	6-W2	パターン幅	0.5mm	
	¥	6-W3	パターン幅	0.25mm	
7. ロット表示マーク	HDK- W1 W1 W1 W2 W3 W4 W5	7-W1	サイス゛縦	6.0mm	
		7-W2	サイス゛横	12.0mm	
			文字サイス・	約1.8mmx1.1mm	
			ラント 径	1.0 φ	
			ラント゛ピッチ	2.0mm	
8. HDK ULナンバー			基板本体内(子基板も (*UL対象品のみ)	含む)に銅箔パターンもしくはシルケでHDKのULナンバーを入	れる
9. パンチング面 指示マーク			基板本体内に銅箔パターンで、 はんだ面側に P_ (*)		
38/311 /			部品面側に		
10. 品名	10. 品名			(* アンダーハー上には数字が入る) 基板本体内に品名(モデル名)を銅箔パターンにて入れる	
				及び品名を組合わせて表示)	
			例) 品名	* P_	


[4] 梱包

基板は、20~50シートを一束として、シュリンク包装を行う。その後、所定の段ボール箱に緩衝材を入れ梱包する。また段ボール箱の側面には、ユーザー名、品名、数量、梱包日を記入します。

但し、梱包箱への入り目、シュリンク包装時の単位枚数については、個別モデル毎に設定するものとします。

[5]ロット表示

製品には次に示すロット表示のどちらかを入れることとします。

①月表示

西暦末尾奇数年はAから、偶数年はNから付ける。 ただしIとOは使用しない。

②月の上中下旬を示す。

2ドットは上旬、1ドットは中旬、ドット無しは下旬を示す。

③作業日

スルーホール作業日の下1ケタを示す。 (1個消してあれば1、2個消してあれば2となる。)

b) ※月表示はa)と同様

 $HDK - \overline{A}$ 1月上旬 、 $HDK - \underline{A}$ 1月中旬 、HDK - A 1月下旬

[6]保証期間について

保証期間A (プリフラックス)

プリフラックスの保証期間は、納入後未開封で3ヵ月以内とし、保管条件としては次の通りとします。 $+5^{\circ}$ ~ $+30^{\circ}$ 70%RH以下

①未開封品に限ります。②保管場所は、直射日光にあたらない場所、酸・アルカリ等の腐食成分の影響の無い場所、ほこりっぽく無い場所とします。

また、使用するプリフラックスは水溶性プリフラックスとします。

ここでいう未開封品とは段ボール梱包から開封していないもののことです。

保証期間B (FR-1基材反り)

FR-1基材の反り規格は、CEM-3基材の反り規格同様に ± 1.6 mmとします。(基材厚み1.6mmの場合) 保証期間は、プリフラックス同様に納入後未開封で3ヵ月以内とし、保管条件としては次の通りとします。+5°C $\sim +30$ °C 70%RH以下

①未開封品に限ります。②保管場所は、直射日光にあたらない場所、酸・アルカリ等の腐食成分の影響の無い場所、ほこりっぽく無い場所とします。

ここでいう未開封品とは段ボール梱包から開封していないもののことです。

保証期間C (FR-1基材耐熱)

FR-1基材の耐熱保証は、納入後未開封で3ヵ月以内とし、保管条件としては次の通りとします。 +5℃ ~ +30℃ 70%RH以下

①未開封品に限ります。②保管場所は、直射日光にあたらない場所、酸・アルカリ等の腐食成分の影響の無い場所、ほこりっぽく無い場所とします。③リフロー温度条件については「北陸電気工業㈱PRC工場推奨 鉛フリー半田対応リフロー温度プロファイル」に記載の内容に準拠します。

ここでいう未開封品とは段ボール梱包から開封していないもののことです。

「7] 基板端面クズについて

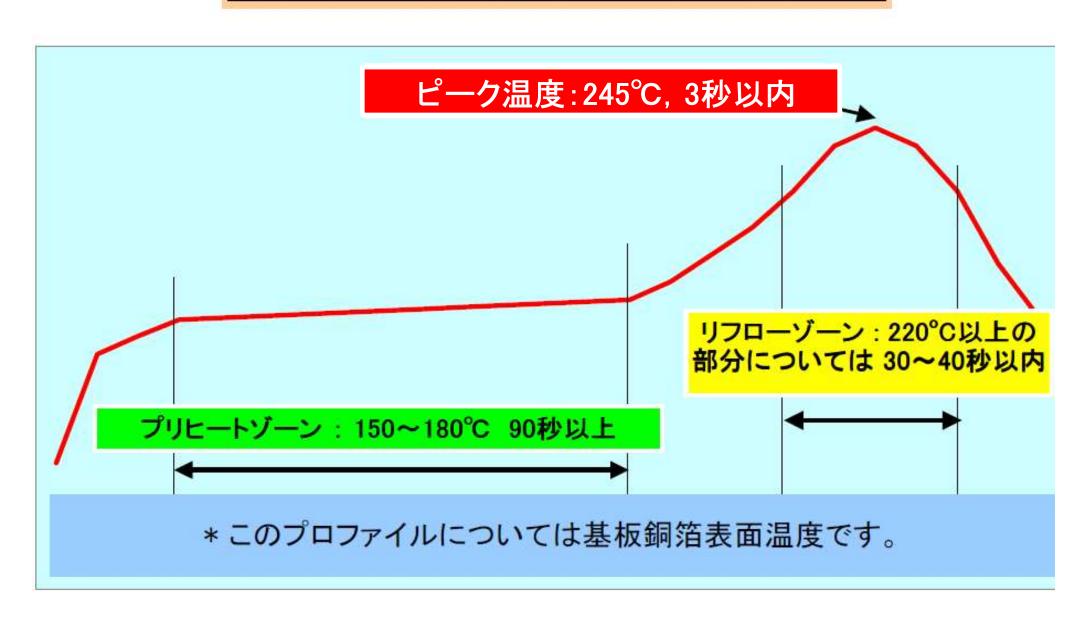
本製品は、定めたQC工程表に沿って生産するものとします。既定の基板プレス条件、金型メンテナンスならびに基板洗浄を行い、可能な限り基板端面クズを抑制ならびに除去しますが、皆無とすることは保証致しかねます。

[8]環境対応

本製品は、RoHS環境法ならびにEU ELV指令に適合しています。

「9]取り扱い上の注意事項

- 1. 弊社で製造するペーストスルーホールは、熱硬化性の導電ペーストを穴に詰めプリント基板の両面を電気的に接続するものです。構造上、他の部品の挿入穴と兼用することは出来ません。
- 2. 鋭利な刃物、鋭角な金属類及びその他硬いものでペーストスルーホールに衝突、接触はさけて下さい。
- 3. 手直し時等ではんだごてを直接ペーストスルーホール上に押し当てることは、ペーストスルーホールに 過度に高い温度をかけることになり、抵抗値の異常変化やスルーホールの破壊に繋がりますのでさけて 下さい。
- 4. インサートマシンへの投入時等においての基板積み重ねは通常プリント基板と同様で問題ありません。


「10]その他

- 1. 当『仕様書』に定めていない項目に問題が生じた場合には、両者協議の上処置決定致します。
- 2. 当『仕様書』に疑義が生じた場合には、その都度両者協議のうえ決定致します。
- 3. 当『仕様書』に記載の内容を変更する場合または工法、材料を変更しようとする場合は、事前に協議を行ない必要に応じ再度取り交わしを行なうものとします。

[11]お断わり

- 1. 当『仕様書』は、製品単体での品質を保証するものです。ご使用に際しては御社にて完成品とされた状態で必ず評価確認をして下さい。
- 2. 当『仕様書』の記載内容を逸脱して使用されたことによって生じた当製品の不具合につきましては、弊社は保証致しかねますのでご了承下さい。
- 3. 当『仕様書』は、当該製品品種の基本的な特性、規格について記述したもので、各個別モデルについては別途『納入仕様書』にて個別に対応致します。

鉛フリーはんだリフロープロファイル

